On weakly harmonic maps and Noether harmonic maps from a Riemann surface into a Riemannian manifold
نویسندگان
چکیده
منابع مشابه
Optimal Regularity of Harmonic Maps from a Riemannian Manifold into a Static Lorentzian Manifold
positive function. In such a case, we write N = N0 ×β R. In this paper we consider the case where N0 is compact. We may assume, by Nash-Moser theorem, N0 is a submanifold of R for some k > 1. By the compactness of N0, there exist constants βmin, βmax > 0 such that βmin ≤ β(x) ≤ βmax for all x ∈ N0. Let M be a Riemannian manifold with non-empty boundary ∂M . For a map w = (u, t) : M → N0 ×β R, w...
متن کاملHarmonic maps from degenerating Riemann surfaces
We study harmonic maps from degenerating Riemann surfaces with uniformly bounded energy and show the so-called generalized energy identity. We find conditions that are both necessary and sufficient for the compactness in W 1,2 and C modulo bubbles of sequences of such maps. 2000 Mathematics Subject Classification: 58E20
متن کاملRemovability of singularities of harmonic maps into pseudo-riemannian manifolds
We consider harmonic maps into pseudo-Riemannian manifolds. We show the removability of isolated singularities for continuous maps, i.e. that any continuous map from an open subset of R into a pseudoRiemannian manifold which is two times continuously differentiable and harmonic everywhere outside an isolated point is actually smooth harmonic everywhere. Introduction Given n ∈ N and two nonnegat...
متن کاملBiharmonic maps from R into a Riemannian manifold
For a domain R and a Riemannian manifold N R. If u 2 W ( ; N) is an extrinsic (or intrinsic, respectively) biharmonic map. Then u 2 C( ; N). x
متن کاملStationary biharmonic maps from R into a Riemannian manifold
We prove that a stationary extrinsic (or intrinsic, respectively) biharmonic map u 2 W ( ; N) from R into a Riemnanian manifold N is smooth away from a closed set of (m 4)-dimensional Hausdor measure zero. x
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Center Publications
سال: 1992
ISSN: 0137-6934,1730-6299
DOI: 10.4064/-27-1-175-181